
25.08.2011 

Variants of Distributed  

P Automata and the  

Efficient Parallelizability of 

Languages 

Gyºrgy Vaszil 

MTA SZTAKI í Hungarian Academy of 

Sciences 

Budapest, Hungary 



Outline  

ɷTypes of parallelism in P systems 

ɷparallel rule application  

ɷparallel processing in the different regions  

 

ɷDistributed P systems 

ɷP automata, distributed P automata  

 

ɷParallelizability of languages  

ɷproperties influencing the efficiency of parallelization  

2 



Parallelism in P systems  

The ïphilosophyð behind distributed P 

systems 



Examples of parallelism in P systems  

The use maximal parallel  way of rule application for ïzero -

checkð. A register machine-like instruction:  

 

 

 

 

               or 

 

4 



Examples of parallelism in P systems  

Creating exponential  workspace in linear  time:  

 

 

                                                                                

                                                                                 ç 

5 



Examples of parallelism in P systems  

We have seen: 

ɷmaximal parallel rule application  

ɷthe creation of exponential  workspace in linear  time  

 

The system is still viewed as one processing unit  and the 

whole input is given to it.  

 

 

6 



Distributed P systems  

The idea behind distributed  P systems is different :  

ɷThe system is composed of several  processing units or 

components  

ɷThe components process different parts of the input  in 

parallel  

ɷThe components communicate  with each other  

7 



Possible questions concerning  distributed  

P systems 

 

ɷIs it possible to split the input into pieces? 

 

ɷIs the distributed computation more efficient than the non -

distributed one? 

 

8 



Distributed P automata  

ɷThe input is a string :  

 

             splitting the input ăĄ cutting the string  

                                                     into pieces  

 

ɷThe efficiency  of the distributed computation:  

 

the number of computational  steps / time  

+ 

the amount of communication  

 

 

 

9 



Bibliographical remarks í distributed  

P automata  

10 



Bibliographical remarks í other useful 

sources  

11 



Distributed P systems  

(Non-distributed) P automata  

12 



P automata  

ɷAn antiport  P system in an environment  from where the 

input  is read 

ɷGiven an initial configuration and a set of final (accepting) 

configurations  

ɷA sequence of multisets  is read from the environment 

during the computation  

ɷThe multiset  sequence is accepted  if the computation ends 

in an accepting configuration  

 

 

                                                  [Csuhaj-Varj», Vaszil 2002]  

13 



P automata í An example  

14 

Given a regular grammar with rule types:  

 

initial                      rules:  

configuration:  

final configuration:     is in the region  



P automata í An example  

15 

Given a regular grammar with rules:  

 

configuration:          rules:  

final configuration:     is in the region  



P automata í An example  

16 

Given a regular grammar with rules:  

 

configuration:          rules:  

final configuration:     is in the region  



P automata í An example  

17 

Given a regular grammar with rules:  

 

configuration:          rules:  

final configuration:     is in the region  



P automata í An example  

18 

Given a regular grammar with rules:  

 

final                         rules:  

configuration:  

final configuration:     is in the region  



P automata í An example  

19 

Given a regular grammar with rules:  

 

final           

configuration:  

                          The set of accepted multiset sequences :  



P automata í An other example  

A finite automaton                               ,                          .  

A simulating P automaton with 2 membranes:  

20 



P automata í An other example  

 

The accepted multiset sequences :  

 

 

21 



P automata í A third example  

22 

[Freund, Kogler, Paun, P®rez-Jim®nez 2010] 



P automata í A third example  

23 

The set of accepted multiset sequences :  



P automata  

ɷAn antiport P system in an environment  from where the 

input  is read 

ɷGiven an initial configuration and a set of final (accepting) 

configurations  

ɷA sequence of multisets is read from the environment 

during the computation  

ɷThe multiset sequence is accepted  if the computation ends 

in an accepting configuration  

 

ɷThe accepted multiset sequence  is interpreted as a string  

24 



P automata  - a more formal definition  

A P automaton is 

 

with  

 

ɷobject alphabet  

ɷmembrane structure  

ɷrules corresponding to the regions  

ɷinitial configuration                             ,  

ɷset of accepting configurations                                    with  

     being finite, or              .  

 

25 



The input mapping  

26 

Maps the sequences of multisets over the object 

alphabet to strings over the input alphabet:  

 

 

 
The language accepted by a P automaton    :  



The input mapping  

27 

The first  example:  

ɷthe mapping:                                     where  

 

The second example:  

ɷthe mapping:                                  

 

The third  example:   

ɷthe mapping:                              ,  



The choice of the input mapping and the 

power of P automata  

 

If erasing is allowed, RE languages are easily obtained  with 

simple systems having just one membrane (extended  

P automata, analyzing P systems).  

 

                                                           [Freund, Oswald 2002] 

28 



The choice of the input mapping and the 

power of P automata  í input mappings with 

erasing 
 

Counter machines with a read -only input tape can be 

simulated.  

Register machine-like instructions for two counters + 

instructions for reading the input tape:  

 

 

                                           the input mapping is erasing:  

29 



The choice of the input mapping and the 

power of P automata  

 

The input mapping should be nonerasing :  

ɷin order to explore new possibilities  

 

The input mapping should be simple  from the point of view 

of computational complexity :  

ɷthe power of the system should not come from the power 

of a complex input mapping  

30 



Two types of input mappings  

ɷ                 if and only if            , and  

 

 

  (Example 3) 

 

ɷ                    if and only if, we have                   for some  

            which is obtained by applying a finite transducer to 

the string representation of the multiset     .  

 

  (Examples 1, 2) 

 

 
31 



32 

Example 1:  

ɷthe mapping:                                     where  

 

Example 2: 

ɷthe mapping:                                  

 

Example 3:  

ɷthe mapping:                              ,  



Systems with permutation mappings  

There are simple linear languages which cannot be 

characterized with systems using         .  

 

 

 

 

On the other hand:  

 

 

 

                                                  [Paun, P®rez-Jim®nez 2010] 

33 



Systems with permutation mappings  

34 

REG 

LIN 
CF 

CS 

[Freund, Kogler, Paun, P®rez-Jim®nez 2010] 



35 



Systems with transduction mappings  

36 

initial                      rules:  

configuration:  

final configuration: A single   in the region  

The accepted multiset sequences:  

Consider: 



Systems with transduction mappings  

Any context -sensitive  language can be characterized.  

 

 

 

 

Moreover: 

For any kind of                    ,  as long as it is not more 

complex than linear space computable (by Turing machines),  

 

 

                                         [Csuhaj-Varj», Ibarra, Vaszil 2004] 

37 



Distributed P systems  

Distributed P automata  



Distributed P automata  

                                    

where 

 

are P automata and 

ɷ     is a set of inter -component  communication  

      rules                           with                                 .  

ɷ                         and                          

39 



The power of dP automata  

There are simple context -sensitive  languages which cannot 

be characterized  with         .  

 

 

 

 

For example: 

 

 

where                            .  

                                                  [Paun, P®rez-Jim®nez 2010]     

 

 
40 



The power of dP automata  

A conjecture  from [Freund, Kogler,Paun, P®rez-Jim®nez 2010]: 

 

There are simple linear  languages which cannot be 

characterized with         .  

 

Namely: 

 

 

On the other hand:  

 

                           

 

 
41 



The power of dP automata  

With permutation  mapping: 

 

 

 

 

 

 

 

                         

 

On the other hand:  

42 

REG 

LIN CF 
CS 



Distributed P automata  

The parallelizability of languages  



The parallelizability of languages  

A language is            -efficiently parallelizable  with respect 

to a class of input mappings     for some                          if  

 

ɷ    can be accepted with balanced computations of a  

dP automaton       with   components such that it is               

where           and  

 

ɷfor all  (non-distributed) P automata     and input mapping  

          such that                     we have  

44 



The parallelizability of languages  

A language is            -efficiently parallelizable  with respect 

to a class of input mappings     for some                          if it 

can be accepted by a dP automaton with    components, such 

that the dP automaton uses a finite amount of 

communication while being     times faster  than any non -

distributed P automaton  which accepts     with any input 

mapping  from the class   .  

45 



The parallelizability of REGular languages  

1. All regular languages can be accepted by balanced 

computations of some dP automaton.  

                       For transduction  mappings: 

46 

 

final conf.:                 final conf.:  



The parallelizability of regular languages  

1. All regular languages can be accepted by balanced 

computations of some dP automaton.  

                       For permutation  mappings: 

 

                                                    Example 3 can also be 

                                                    modified based on the  

                                                    same idea for a 

                                                    dP system with  

2                                                   2 components  

                                                    and 

47 


