
25.08.2011

Variants of Distributed

P Automata and the

Efficient Parallelizability of

Languages

György Vaszil

MTA SZTAKI – Hungarian Academy of

Sciences

Budapest, Hungary

Outline

●Types of parallelism in P systems

●parallel rule application

●parallel processing in the different regions

●Distributed P systems

●P automata, distributed P automata

●Parallelizability of languages

●properties influencing the efficiency of parallelization

2

Parallelism in P systems

The “philosophy” behind distributed P

systems

Examples of parallelism in P systems

The use maximal parallel way of rule application for “zero-

check”. A register machine-like instruction:

 or

4

Examples of parallelism in P systems

Creating exponential workspace in linear time:

 …

5

Examples of parallelism in P systems

We have seen:

●maximal parallel rule application

●the creation of exponential workspace in linear time

The system is still viewed as one processing unit and the

whole input is given to it.

6

Distributed P systems

The idea behind distributed P systems is different:

●The system is composed of several processing units or

components

●The components process different parts of the input in

parallel

●The components communicate with each other

7

Possible questions concerning distributed

P systems

●Is it possible to split the input into pieces?

●Is the distributed computation more efficient than the non-

distributed one?

8

Distributed P automata

●The input is a string:

 splitting the input  cutting the string

 into pieces

●The efficiency of the distributed computation:

the number of computational steps / time

+

the amount of communication

9

Bibliographical remarks – distributed

P automata

10

Bibliographical remarks – other useful

sources

11

Distributed P systems

(Non-distributed) P automata

12

P automata

●An antiport P system in an environment from where the

input is read

●Given an initial configuration and a set of final (accepting)

configurations

●A sequence of multisets is read from the environment

during the computation

●The multiset sequence is accepted if the computation ends

in an accepting configuration

 [Csuhaj-Varjú, Vaszil 2002]

13

P automata – An example

14

Given a regular grammar with rule types:

initial rules:

configuration:

final configuration: is in the region

P automata – An example

15

Given a regular grammar with rules:

configuration: rules:

final configuration: is in the region

P automata – An example

16

Given a regular grammar with rules:

configuration: rules:

final configuration: is in the region

P automata – An example

17

Given a regular grammar with rules:

configuration: rules:

final configuration: is in the region

P automata – An example

18

Given a regular grammar with rules:

final rules:

configuration:

final configuration: is in the region

P automata – An example

19

Given a regular grammar with rules:

final

configuration:

 The set of accepted multiset sequences:

P automata – An other example

A finite automaton , .

A simulating P automaton with 2 membranes:

20

P automata – An other example

The accepted multiset sequences:

21

P automata – A third example

22

[Freund, Kogler, Paun, Pérez-Jiménez 2010]

P automata – A third example

23

The set of accepted multiset sequences:

P automata

●An antiport P system in an environment from where the

input is read

●Given an initial configuration and a set of final (accepting)

configurations

●A sequence of multisets is read from the environment

during the computation

●The multiset sequence is accepted if the computation ends

in an accepting configuration

●The accepted multiset sequence is interpreted as a string

24

P automata - a more formal definition

A P automaton is

with

●object alphabet

●membrane structure

●rules corresponding to the regions

●initial configuration ,

●set of accepting configurations with

 being finite, or .

25

The input mapping

26

Maps the sequences of multisets over the object

alphabet to strings over the input alphabet:

The language accepted by a P automaton :

The input mapping

27

The first example:

●the mapping: where

The second example:

●the mapping:

The third example:

●the mapping: ,

The choice of the input mapping and the

power of P automata

If erasing is allowed, RE languages are easily obtained with

simple systems having just one membrane (extended

P automata, analyzing P systems).

 [Freund, Oswald 2002]

28

The choice of the input mapping and the

power of P automata – input mappings with

erasing

Counter machines with a read-only input tape can be

simulated.

Register machine-like instructions for two counters +

instructions for reading the input tape:

 the input mapping is erasing:

29

The choice of the input mapping and the

power of P automata

The input mapping should be nonerasing:

●in order to explore new possibilities

The input mapping should be simple from the point of view

of computational complexity:

●the power of the system should not come from the power

of a complex input mapping

30

Two types of input mappings

● if and only if , and

 (Example 3)

● if and only if, we have for some

 which is obtained by applying a finite transducer to

the string representation of the multiset .

 (Examples 1, 2)

31

32

Example 1:

●the mapping: where

Example 2:

●the mapping:

Example 3:

●the mapping: ,

Systems with permutation mappings

There are simple linear languages which cannot be

characterized with systems using .

On the other hand:

 [Paun, Pérez-Jiménez 2010]

33

Systems with permutation mappings

34

REG

LIN
CF

CS

[Freund, Kogler, Paun, Pérez-Jiménez 2010]

35

Systems with transduction mappings

36

initial rules:

configuration:

final configuration: A single in the region

The accepted multiset sequences:

Consider:

Systems with transduction mappings

Any context-sensitive language can be characterized.

Moreover:

For any kind of , as long as it is not more

complex than linear space computable (by Turing machines),

 [Csuhaj-Varjú, Ibarra, Vaszil 2004]

37

Distributed P systems

Distributed P automata

Distributed P automata

where

are P automata and

● is a set of inter-component communication

 rules with .

● and

39

The power of dP automata

There are simple context-sensitive languages which cannot

be characterized with .

For example:

where .

 [Paun, Pérez-Jiménez 2010]

40

The power of dP automata

A conjecture from [Freund, Kogler,Paun, Pérez-Jiménez 2010]:

There are simple linear languages which cannot be

characterized with .

Namely:

On the other hand:

41

The power of dP automata

With permutation mapping:

On the other hand:

42

REG

LIN CF
CS

Distributed P automata

The parallelizability of languages

The parallelizability of languages

A language is -efficiently parallelizable with respect

to a class of input mappings for some if

● can be accepted with balanced computations of a

dP automaton with components such that it is

where and

●for all (non-distributed) P automata and input mapping

 such that we have

44

The parallelizability of languages

A language is -efficiently parallelizable with respect

to a class of input mappings for some if it

can be accepted by a dP automaton with components, such

that the dP automaton uses a finite amount of

communication while being times faster than any non-

distributed P automaton which accepts with any input

mapping from the class .

45

The parallelizability of REGular languages

1. All regular languages can be accepted by balanced

computations of some dP automaton.

 For transduction mappings:

46

final conf.: final conf.:

The parallelizability of regular languages

1. All regular languages can be accepted by balanced

computations of some dP automaton.

 For permutation mappings:

 Example 3 can also be

 modified based on the

 same idea for a

 dP system with

2 2 components

 and

47

The parallelizability of REG

1. All regular languages can be accepted by balanced

computations of some dP automaton.

We can use input mappings of any type.

2. What about the efficiency of parallelization ?

48

The parallelizability of regular languages

Efficiency with respect to :

There are -efficiently parallelizable regular languages

with respect to .

This holds because there are regular languages where the

order of no letters can be exchanged.

No two letters can be read in the same step.

  There is no P automaton which needs less steps than

 the number of letters.

 [Paun, Pérez-Jiménez 2010]
49

50

For all (non-distributed) P automata and input mapping

 such that we have

The parallelizability of regular languages

Efficiency with respect to input mappings :

For any regular and , there exists a P automaton

such that , , and for any with

 , it holds that

Take the finite automaton with ,

it needs steps.

Let , ,

and

 with and .

51

The parallelizability of regular languages

Efficiency with respect to :

There are no -efficiently parallelizable regular

languages with respect to .

This holds because with input mappings from , there

is no “fastest” (non-distributed) P automata for a regular

language.

Speedup with a linear factor is always possible which is a

“problem”:

52

Real-time recognizable languages

A language is real-time recognizable by a P automaton ,

if for some , and reads a nonempty input

multiset in each step of any computation accepting the

words of .

53

The parallelizability of real-time

recognizable languages

There are no -efficiently parallelizable real-time

recognizable languages with respect to .

This holds because the linear speedup of P automata

recognizing real-time recognizable languages is also possible.

54

How to speed up real-time P automata

1. Simulate the real-time P automaton with one membrane

2. Apply the same idea as used in the regular case to speed

up the one-membrane P automaton

55

Simulating a real-time P automaton with

one membrane

The input mappings:

56

How to speed up real-time P automata

2. Apply the same idea as used in the regular case to speed

up the one-membrane P automaton

57

There are no (k,l,m)-efficiently

parallelizable real-time recognizable

languages with respect to TRANS

Let be a language which is real-time recognizable by a

P automaton such that for some ,

and let .

There exists a P automaton such that for

some , and for any , it holds that

 .

58

Distributed P automata

Are there other notions of efficient

parallelizability?

Are there other reasonable notions of

efficient parallelizability?

So far we had -efficiency – the amount of inter-

component communication is finitely bounded.

Consider . It is

not -efficiently parallelizable since a non-constant

amount of communication is needed.

What happens if the communication steps are not more

“expensive” than the computational steps?

60

(k,m)-efficient parallelizability

Let .

There are words in which no two adjacent symbols can be

exchanged such that the result is still in , a (non-

distributed) P automaton with input mapping needs at

least steps.

Let us take with two components which communicate

after every third step:

 = + = + =

61

(k,m)-efficient parallelizability

Let .

There is a with two components, such that

which is efficient, although the amount of communication is

not bounded by any constant.

62

Besides (k,l,m)-efficient parallelizability,

there are other efficiency notions

Are there languages which are efficiently parallelizable

according to any of them considering input mappings form

TRANS?

Does it make any difference, if the splitting of the input is

done in a “more complicated” manner?

63

Conclusions

Conclusions

●Distributed P systems aim to employ parallelism in such a

way that different parts of the input are processed

simultaneously in different parts/components of the

system

●It is natural to consider distributed P automata

●The properties of P automata are influenced by the way the

accepted word is associated to the accepted multiset

sequence

●This has implications also for the distributed case, not only

for the generative power, but also for the efficiency of the

parallelization of languages

65

