
A Spiking Neural P system simulator based on
CUDA

Francis George Cabarle1, Henry Adorna1,
Miguel Martı́nez-del-Amor2

1Algorithms & Complexity Lab, Dept. of Computer Science, University of
the Philippines Diliman

fccabarle@up.edu.ph, ha@dcs.upd.edu.ph
2Research Group on Natural Computing, University of Seville, Spain

mdelamor@us.es

25.August.2011
CMC12-2011, UPEC, 23-26 August 2011 A Spiking Neural P system simulator based on CUDA

Introduction
Main Goal

Early Suggestions
SN P System and its Simulator

Our Suggestion
Simulation Results

Conclusion

What did we do?

Our Share
1 Implementation of an SN P Systems without delay in GPU

using (Py)CUDA capitalizing on the fact that SN P systems
without delay is represented by a matrix. Also, that its (SN
P Systems’) operation is implementable by some matrix
operation.

2 As expected, the implementation base on CUDA performs
better than that implemented in CPU.

CMC12-2011, UPEC, 23-26 August 2011 A Spiking Neural P system simulator based on CUDA

Introduction
Main Goal

Early Suggestions
SN P System and its Simulator

Our Suggestion
Simulation Results

Conclusion

Motivation
Simulators
My first CMC paper . . .

Membrane Computing

Symbolic presentation
[1[2]2[3]3[4[5]5[6[8]8[9]9]6[7]7]4]1

CMC12-2011, UPEC, 23-26 August 2011 A Spiking Neural P system simulator based on CUDA

Introduction
Main Goal

Early Suggestions
SN P System and its Simulator

Our Suggestion
Simulation Results

Conclusion

Motivation
Simulators
My first CMC paper . . .

Implementation . . . anyone?

(ref: digstuffs.com)

CMC12-2011, UPEC, 23-26 August 2011 A Spiking Neural P system simulator based on CUDA

Introduction
Main Goal

Early Suggestions
SN P System and its Simulator

Our Suggestion
Simulation Results

Conclusion

Motivation
Simulators
My first CMC paper . . .

Early efforts . . .(via P Page) since 2002 . . .

1 January 2002: Transition P Systems Simulator.: by Angel Baranda, ’Natural Computing Group of Madrid
(Spain).

2 May 2002: A Membrane Systems Simulator.: by Gabriel Ciobanu and Dorin Paraschiv
3 September 2003: SubLP-Studio v0.1: by Alexandros Georgiou, University of Sheffield, UK

4 October 2004: SimCM Author: M. Isabel Nepomuceno Chamorro, Natural Computing Group, University of
Sevilla, Spain

5 November 2004: PSim: by Group for Models of Natural Computing (MNC), University of Verona, Italy
6 September 2005: Simulation Software for Membrane Approximation Algorithm: by T. Nishida, Toyama

Prefectural University, Japan
7 March 2006: Two simulators - Vibrio Fischeri and Dynamical Probabilistic P systems: by P. Cazzaniga, D.

Pescini, Universita’ di Milano-Bicocca, Milan, Italy
8 July 2006: Cyto-Sim: Biological compartment simulator: Microsoft Research - University of Trento Centre

for Computational and Systems Biology, Trento, Italy.
9 August 2006: simulators for conformon P systems: Pierluigi Frisco

10 November 2006: Simulators for biological processes available at the University of Sheffield, UK

11 April 2007: Spiking Neural P Systems Simulator, by M.A. Gutierrez Naranjo and D. Ramirez Martinez,
University of Sevilla, Spain

12 March 2009. MetaPlab: a virtual laboratory for modeling biological systems by MP systems. University of
Verona, Italy.

CMC12-2011, UPEC, 23-26 August 2011 A Spiking Neural P system simulator based on CUDA

Introduction
Main Goal

Early Suggestions
SN P System and its Simulator

Our Suggestion
Simulation Results

Conclusion

Motivation
Simulators
My first CMC paper . . .

Primary motivation of this work . . .

Sevilla, (2009)
Xiangxiang Zeng (SN P System), Miguel

Martinez-del-Amor (GPGPU with CUDA), myself

Matrix Representation of
Spiking Neural P Systems.
Int. Conf. on Membrane
Computing 2010
Xiangxiang Zeng, Henry Adorna, Miguel A. Martnez-del-Amor,

Linqiang Pan, Mario J. Perez-Jimenez

CMC12-2011, UPEC, 23-26 August 2011 A Spiking Neural P system simulator based on CUDA

Introduction
Main Goal

Early Suggestions
SN P System and its Simulator

Our Suggestion
Simulation Results

Conclusion

Motivating Questions

Question
1 How do we implement the parallelism in P Systems, in

particular SN P Systems?
2 Is there a hardware capable enough to implement

parallelism of P Systems?

CMC12-2011, UPEC, 23-26 August 2011 A Spiking Neural P system simulator based on CUDA

Introduction
Main Goal

Early Suggestions
SN P System and its Simulator

Our Suggestion
Simulation Results

Conclusion

Previous works
Our initial share . . .

Since 2004

G. Ciobanu, G. Wenyuan:

1 P Systems Running on a Cluster of Computers. Lecture Notes in Computer Science, 2933,
123-139, 2004.

Van Nguyen, David Kearney, Gianpaolo Gioiosa:

1 Balancing Performance, Flexibility, and Scalability in a Parallel Computing Platform for Membrane
Computing Applications. Workshop on Membrane Computing 2007: 385-413

2 An Implementation of Membrane Computing Using Reconfigurable Hardware. Computing and Informatics
27(3+): 551-569 (2008)

3 An Algorithm for Non-deterministic Object Distribution in P Systems and Its Implementation in Hardware.
Workshop on Membrane Computing 2008: 325-354

4 A Region-Oriented Hardware Implementation for Membrane Computing Applications. Workshop on
Membrane Computing 2009: 385-409

Jose M. Cecilia, Jose M. Garca, Gines D. Guerrero, Miguel A. Martinez-del-Amor, Ignacio Perez-Hurtado,
Mario J. Perez-Jimenez:

1 Simulating a P system based efficient solution to SAT by using GPUs. J. Log. Algebr. Program. 79(6):
317-325 (2010)

2 Simulation of P systems with active membranes on CUDA. Briefings in Bioinformatics 11(3): 313-322 (2010)

CMC12-2011, UPEC, 23-26 August 2011 A Spiking Neural P system simulator based on CUDA

Introduction
Main Goal

Early Suggestions
SN P System and its Simulator

Our Suggestion
Simulation Results

Conclusion

Previous works
Our initial share . . .

SN P Systems without delay via GPU
Matrix Representation
Configuration vector (Ck) : C0 = (2, 1, 1)
Spiking vectors (Sk): (1, 0, 1, 1, 0), (0, 1, 1, 1, 0)
Spiking transition matrix (MΠ):

Next configuration is calculated by:
Ck+1 = Ck + Sk MΠ

Matrix operations are very optimized on the GPU.

A GPU based simulator for SNP system.

c

F. Cabarle, H. Adorna, M.A. Martnez-del-Amor. Simulating Spiking Neural P System without Delay using GPU. , 9th

BWMC.

CMC12-2011, UPEC, 23-26 August 2011 A Spiking Neural P system simulator based on CUDA

Introduction
Main Goal

Early Suggestions
SN P System and its Simulator

Our Suggestion
Simulation Results

Conclusion

SN P system
Simulator

SN P System

Spiking Neural P (SNP)
systems: directed graph
inspired by neurons
connected by axons w/
synapses [Ionescu et al.
2006]

(ref:heatonresearch.com)

Figure: A sample SNP system Π1 w/
labeled parts.

CMC12-2011, UPEC, 23-26 August 2011 A Spiking Neural P system simulator based on CUDA

Introduction
Main Goal

Early Suggestions
SN P System and its Simulator

Our Suggestion
Simulation Results

Conclusion

SN P system
Simulator

SN P Systems
An SNP system is a construct of the form:

Π = (O, σ1, . . . , σm, syn, in,out),

1. O = {a}, alphabet of only one object, the system spike a.

2. σ1, . . . , σm are m neurons of the form: σi = (ni ,Ri),1 ≤ i ≤ m,:
a) ni ≥ 0, initial spike a in neuron σi
b) Ri , finite set of rules of w/ 2 forms: (b-1) Spiking rules,

E/ac → a, E is a reg. exp. over a, c ≥ 1. (b-2) Forgetting
rules, as → λ, s ≥ 1, such that for each rule E/ac → a of
type (b-1) from Ri , as /∈ L(E).

3. syn = {(i , j) |1 ≤ i , j ≤ m, i 6= j } are synapses between
neurons.

4. in,out ∈ {1,2, . . . ,m}, input & output neurons.
CMC12-2011, UPEC, 23-26 August 2011 A Spiking Neural P system simulator based on CUDA

Introduction
Main Goal

Early Suggestions
SN P System and its Simulator

Our Suggestion
Simulation Results

Conclusion

SN P system
Simulator

From Seville and India Group

1 (April 2007) Spiking Neural P Systems Simulator, by M.A.
Gutierrez Naranjo and D. Ramirez Martinez, University of
Sevilla, Spain.

2 (2011, CMC 12) Simulation of Spiking Neural P Systems
Using Pnet Lab, by V.P. Metta, K. Krithivasan,D. Garg, India

3 (2011, CMC 12) P Lingua based Simulator for Spiking
Neural P Systems, L.F. Macias-Ramos, et al., University of
Sevilla, Spain.

CMC12-2011, UPEC, 23-26 August 2011 A Spiking Neural P system simulator based on CUDA

Introduction
Main Goal

Early Suggestions
SN P System and its Simulator

Our Suggestion
Simulation Results

Conclusion

SN P system
Simulator

SN P Matrix Representation

Spiking transition matrix MSNP is a matrix comprised of aij
elements where aij is given as

Definition

aij =

−c, rule ri is in σj and is applied consuming c spikes;

p, rule ri is in σs (s 6= j and (s, j) ∈ syn)
and is applied producing p spikes in total;

0, rule ri is in σs (s 6= j and (s, j) /∈ syn).

CMC12-2011, UPEC, 23-26 August 2011 A Spiking Neural P system simulator based on CUDA

Introduction
Main Goal

Early Suggestions
SN P System and its Simulator

Our Suggestion
Simulation Results

Conclusion

SN P system
Simulator

An SN P Matrix

Configuration vector Ck :
C0 =< 2,1,1 >.

Spiking vector Sk :
S0 =< 1,0,1,1,0 >,
S′

0 =< 0,1,1,1,0 >.

Spiking transition matrix:

MΠ1 =

−1 1 1
−2 1 1
1 −1 1
0 0 −1
0 0 −2

 Figure: SNP system Π1 from
[Ionescu et al. 2006].

CMC12-2011, UPEC, 23-26 August 2011 A Spiking Neural P system simulator based on CUDA

Introduction
Main Goal

Early Suggestions
SN P System and its Simulator

Our Suggestion
Simulation Results

Conclusion

SN P system
Simulator

Next Configuration representation

Next configuration: Ck+1 = Ck + Sk ·MΠ.
S′′

0 =< 1,1,1,1,0 > is an invalid Sk (only one rule per
neuron is used).

CMC12-2011, UPEC, 23-26 August 2011 A Spiking Neural P system simulator based on CUDA

Introduction
Main Goal

Early Suggestions
SN P System and its Simulator

Our Suggestion
Simulation Results

Conclusion

GPU computing: CUDA
SN P Systems in GPU
Algorithm
Simulation Flow Diagram

Our Suggestion:GPU Computing

GPGPU: techniques for using the GPU as a massively parallel
co-processor.

Host: the CPU vs Device: the GPU
CMC12-2011, UPEC, 23-26 August 2011 A Spiking Neural P system simulator based on CUDA

Introduction
Main Goal

Early Suggestions
SN P System and its Simulator

Our Suggestion
Simulation Results

Conclusion

GPU computing: CUDA
SN P Systems in GPU
Algorithm
Simulation Flow Diagram

CPU vs. GPU

Figure: General CPU vs. general GPU architecture [NVIDIA corp.
2011].

CMC12-2011, UPEC, 23-26 August 2011 A Spiking Neural P system simulator based on CUDA

Introduction
Main Goal

Early Suggestions
SN P System and its Simulator

Our Suggestion
Simulation Results

Conclusion

GPU computing: CUDA
SN P Systems in GPU
Algorithm
Simulation Flow Diagram

Why GPU?

1 GPUs are the leading exemplars of modern high
throughput-oriented architectures [Garland et al, 2010].

2 GPUs have been successfully used to speedup many
parallel applications.

3 Modern GPUs are not limited only to graphics processing,
as done by the first graphic cards, as they can now be
used for general purpose computations [Harris, 2005]; they
are now multi-core and data-parallel processors [Kirk and
Hwu, 2010].

CMC12-2011, UPEC, 23-26 August 2011 A Spiking Neural P system simulator based on CUDA

Introduction
Main Goal

Early Suggestions
SN P System and its Simulator

Our Suggestion
Simulation Results

Conclusion

GPU computing: CUDA
SN P Systems in GPU
Algorithm
Simulation Flow Diagram

Why GPU?

1 GPGPU (General Purpose computation on the GPU), a
programmer can achieve with a single GPU, a throughput
similar to that of a CPU based cluster [NVIDIA, 2010;
Harris, 2010]

2 the main advantages of using GPUs are their low-cost,
low-maintenance and low power consumption relative to
conventional parallel clusters and setups, while providing
comparable or improved computational power.

3 Moreover, parallel computing concepts such as hardware
abstraction, scaling, and so on are handled efficiently by
current GPUs.

CMC12-2011, UPEC, 23-26 August 2011 A Spiking Neural P system simulator based on CUDA

Introduction
Main Goal

Early Suggestions
SN P System and its Simulator

Our Suggestion
Simulation Results

Conclusion

GPU computing: CUDA
SN P Systems in GPU
Algorithm
Simulation Flow Diagram

Parallel Computing w/ GPUs

Compute Unified
Device Architecture
(CUDA) by NVIDIA
in 2006
Arch + programming
model, extends
ANSI C

Figure: Graphics card w/ NVIDIA CUDA
enabled GPU.

CMC12-2011, UPEC, 23-26 August 2011 A Spiking Neural P system simulator based on CUDA

Introduction
Main Goal

Early Suggestions
SN P System and its Simulator

Our Suggestion
Simulation Results

Conclusion

GPU computing: CUDA
SN P Systems in GPU
Algorithm
Simulation Flow Diagram

CUDA Processing Flow

Figure: CUDA Processing Flow, [http://en.wikipedia.org].
CMC12-2011, UPEC, 23-26 August 2011 A Spiking Neural P system simulator based on CUDA

Introduction
Main Goal

Early Suggestions
SN P System and its Simulator

Our Suggestion
Simulation Results

Conclusion

GPU computing: CUDA
SN P Systems in GPU
Algorithm
Simulation Flow Diagram

Remarks on the Computation

1 The code to be executed in a GPU is written in CUDA C
(CUDA extended ANSI C programming language).

2 The parallel distribution of the execution units (threads) in
CUDA can be split up into multiple threads within multiple
thread blocks, each contained within a grid of (thread)
blocks. These grids belong to a single device/single GPU.

3 Each device has multiple cores, each capable of running
its own block of threads.

CMC12-2011, UPEC, 23-26 August 2011 A Spiking Neural P system simulator based on CUDA

Introduction
Main Goal

Early Suggestions
SN P System and its Simulator

Our Suggestion
Simulation Results

Conclusion

GPU computing: CUDA
SN P Systems in GPU
Algorithm
Simulation Flow Diagram

CUDA model

CUDA uses single program, multiple data (SPMD) parallel paradigm
[Kirk, Hwu 2010].

Figure: CUDA programming model, [Cecilia et al. (2010a)].CMC12-2011, UPEC, 23-26 August 2011 A Spiking Neural P system simulator based on CUDA

Introduction
Main Goal

Early Suggestions
SN P System and its Simulator

Our Suggestion
Simulation Results

Conclusion

GPU computing: CUDA
SN P Systems in GPU
Algorithm
Simulation Flow Diagram

Remarks on the Computation

1 A function known as a kernel function is one that is called
from the host but executed in the device.

2 GPUs with the same architecture as the one used in this
work has a maximum number of threads per block equal to
512.

3 The maximum size of each dimension of a thread block is
(512 x 512 x 64), pertaining to the x,y, and z dimensions of
a block respectively.

4 Lastly, the maximum size of each dimension of a grid of
thread block is (65535 x 65535 x 1) for the grid’s x,y, and z
dimensions.

CMC12-2011, UPEC, 23-26 August 2011 A Spiking Neural P system simulator based on CUDA

Introduction
Main Goal

Early Suggestions
SN P System and its Simulator

Our Suggestion
Simulation Results

Conclusion

GPU computing: CUDA
SN P Systems in GPU
Algorithm
Simulation Flow Diagram

Remark: Matrix & parallel hardware

Matrix operations are very optimized on parallel hardware,
including GPUs [Fatahilian et al. 2004].
GPU simulations of SNP systems using their matrix
representations seem more natural.

CMC12-2011, UPEC, 23-26 August 2011 A Spiking Neural P system simulator based on CUDA

Introduction
Main Goal

Early Suggestions
SN P System and its Simulator

Our Suggestion
Simulation Results

Conclusion

GPU computing: CUDA
SN P Systems in GPU
Algorithm
Simulation Flow Diagram

GPU Simulation Consideration

1 Input files: file versions of Ck , Sk , MSNP , and a file r (with
the list of rules Ri .)

2 String manipulation: An OOPL such as Python is suited.
PyCUDA was chosen in order to fully utilize the speedup of
CUDA as well as minimize development time, and is a
Python programming interface to CUDA.1

3 Computations involving linear algebra: C programming
language (which NVIDIA extended for their purposes as
CUDA C) is suited.

1
PyCUDA was developed by mathematician Andreas Klöckner for for a more efficient parallel computing on

CUDA using Python: safer in terms of memory handling, object cleanup (among others), and faster (in terms of
development time via abstractions etc).
In actuality, only the kernel functions are written in C, and those functions are embedded within the Python code

CMC12-2011, UPEC, 23-26 August 2011 A Spiking Neural P system simulator based on CUDA

Introduction
Main Goal

Early Suggestions
SN P System and its Simulator

Our Suggestion
Simulation Results

Conclusion

GPU computing: CUDA
SN P Systems in GPU
Algorithm
Simulation Flow Diagram

Simulation notes

SNP systems w/o delays, MΠ in row-major order.
Non-determinism: produce all possible and valid Sk ’s from
given Ck ’s.
Use PyCUDA for handling of characters + reg exp, C for
integral computations.
PyCUDA is Python wrapper for CUDA, used in HPC
[Klöckner 2009].
Ck , Sk , MΠ as mutable PyCUDA lists, not strings.
2 stopping criteria:

Zero Ck
Repetition of Ck ’s

CMC12-2011, UPEC, 23-26 August 2011 A Spiking Neural P system simulator based on CUDA

Introduction
Main Goal

Early Suggestions
SN P System and its Simulator

Our Suggestion
Simulation Results

Conclusion

GPU computing: CUDA
SN P Systems in GPU
Algorithm
Simulation Flow Diagram

Simulation notes

1 Host/CPU side (python/C)→ Read inputs (C0/Ck ’s, Sk ’s,
MΠ), write and calculate next Sk ’s, Ck+1’s. (decision
making)

2 Device/GPU side (CUDA)→ Matrix addition +
multiplication (outsourced parallel work) i.e. perform
(Ck+1 = Ck + Sk ·MΠ) in parallel.

CMC12-2011, UPEC, 23-26 August 2011 A Spiking Neural P system simulator based on CUDA

Introduction
Main Goal

Early Suggestions
SN P System and its Simulator

Our Suggestion
Simulation Results

Conclusion

GPU computing: CUDA
SN P Systems in GPU
Algorithm
Simulation Flow Diagram

Simulation Algorithm

Overview:
Inputs: C0 (Ck ’s afterwards), MΠ, r (rule file)
Outputs: All valid+possible Sk ’s, Ck ’s.

I Load inputs (Host)
II Compute all possible+valid Sk ’s using Ck ’s (Host).

III Per Sk , compute next Ck (Device).
IV Repeat I, II and III until at least 1 stopping criteria is

satisfied (Host/Device).

CMC12-2011, UPEC, 23-26 August 2011 A Spiking Neural P system simulator based on CUDA

Introduction
Main Goal

Early Suggestions
SN P System and its Simulator

Our Suggestion
Simulation Results

Conclusion

GPU computing: CUDA
SN P Systems in GPU
Algorithm
Simulation Flow Diagram

Simulation Flow Diagram

Figure: Diagram showing the simulation flow, with the host and device
emphasized.CMC12-2011, UPEC, 23-26 August 2011 A Spiking Neural P system simulator based on CUDA

Introduction
Main Goal

Early Suggestions
SN P System and its Simulator

Our Suggestion
Simulation Results

Conclusion

Simulation runs

Machine model specification

1 Setup of snpgpu-sim3 simulated Π1 and Π2 using an Apple
iMac running Mac OS X 10.5.8, with an Intel Core2Duo
CPU at 2.66GHz and with a 6MB L2 cache.

2 The GPU of the iMac is an NVIDIA GeForce 9400 graphics
card at 1.15 GHz, with 256 MB Video RAM (or around
266x106 bytes), 16 cores, running CUDA version 3.1.

CMC12-2011, UPEC, 23-26 August 2011 A Spiking Neural P system simulator based on CUDA

Introduction
Main Goal

Early Suggestions
SN P System and its Simulator

Our Suggestion
Simulation Results

Conclusion

Simulation runs

Simulation results for Π1

Simulation results for Π1 using different Ck values.

Speedup is 1.4× .

CMC12-2011, UPEC, 23-26 August 2011 A Spiking Neural P system simulator based on CUDA

Introduction
Main Goal

Early Suggestions
SN P System and its Simulator

Our Suggestion
Simulation Results

Conclusion

Simulation runs

Simulation results for Π2

Simulation results for Π2 using different Ck values.

Speedup is 6.8× .

SNP system Π2 from [Ionescu et al. 2006].

14 rules and 9 neurons, 14× 9 matrix

CMC12-2011, UPEC, 23-26 August 2011 A Spiking Neural P system simulator based on CUDA

Introduction
Main Goal

Early Suggestions
SN P System and its Simulator

Our Suggestion
Simulation Results

Conclusion

Simulation runs

Note:

Max number of neurons allowable in current setup:

Ck = 266× 106 bytes/(16 bytes + 4 bytes · |R|),

where
Simulation requirements:
GbMem = 4 · sizeof (Ck) + sizeof (MΠ),
using standard C language sizeof () func’n (int type is 4 bytes).

Max Global memory (GbMem) of used GPU: 266× 106

bytes
MΠ is |R| × |Ck | (total rules by total neurons).

Simulation limit is a function of R & Ck .

CMC12-2011, UPEC, 23-26 August 2011 A Spiking Neural P system simulator based on CUDA

Introduction
Main Goal

Early Suggestions
SN P System and its Simulator

Our Suggestion
Simulation Results

Conclusion

What do we get?

In this paper :
1 we have snpgpu-sim3, can now simulate SNP systems with

regular expressions (those of the form (b-1)).
2 The speedup of snpgpu-sim3 over snpcpu-sim for Π1 went up to

1.4 times, while it was 6.8 for Π2.
3 These results show that SNP system simulation on GPUs can

greatly benefit from the parallel architecture of GPUs, and that
increasing the parameters (of GPU) offer even larger speedups.

4 This benefit in speedup is coupled with the fact that the CUDA
enabled graphics cards are readily available.

5 These cards offer boosts in general purpose computations as
co-processors of commonly used CPUs, at a fraction of the
power consumption of CPU clusters.

CMC12-2011, UPEC, 23-26 August 2011 A Spiking Neural P system simulator based on CUDA

Introduction
Main Goal

Early Suggestions
SN P System and its Simulator

Our Suggestion
Simulation Results

Conclusion

What do we do next?

1 Improve parallelism . . .

2 SNP system variants can be simulated by extending the
current GPU simulator.

3 a generic P system parser based using P-lingua formatting
for the GPU based SNP system simulator.

CMC12-2011, UPEC, 23-26 August 2011 A Spiking Neural P system simulator based on CUDA

Introduction
Main Goal

Early Suggestions
SN P System and its Simulator

Our Suggestion
Simulation Results

Conclusion

Thank You for Your Attention

CMC12-2011, UPEC, 23-26 August 2011 A Spiking Neural P system simulator based on CUDA

Introduction
Main Goal

Early Suggestions
SN P System and its Simulator

Our Suggestion
Simulation Results

Conclusion

1 Introduction
Motivation
Simulators
My first CMC paper . . .

2 Main Goal
Motivating Questions

3 Early Suggestions
Previous works
Our initial share . . .

4 SN P System and its Simulator
SN P system
Simulator

5 Our Suggestion
GPU computing: CUDA

CMC12-2011, UPEC, 23-26 August 2011 A Spiking Neural P system simulator based on CUDA

Introduction
Main Goal

Early Suggestions
SN P System and its Simulator

Our Suggestion
Simulation Results

Conclusion

SN P Systems in GPU
Algorithm
Simulation Flow Diagram

6 Simulation Results
Simulation runs

7 Conclusion

CMC12-2011, UPEC, 23-26 August 2011 A Spiking Neural P system simulator based on CUDA

	Main Talk
	Introduction
	Motivation
	Simulators
	My first CMC paper …

	Main Goal
	Motivating Questions

	Early Suggestions
	Previous works
	Our initial share …

	SN P System and its Simulator
	SN P system
	Simulator

	Our Suggestion
	GPU computing: CUDA
	SN P Systems in GPU
	Algorithm
	Simulation Flow Diagram

	Simulation Results
	Simulation runs

	Conclusion
	

